005 • Response

puzzle_id:

5-150deff5

description:

test input

timestamp:

24.357.081407

call_count:

5

model:

gemini-2.0-flash-thinking-exp-1219

The user wants me to apply the learned transformation rule to the test input grid. The rule is to outline the contiguous block of gray (5) pixels in azure (8) and fill the interior with red (2).

Plan:

  1. Identify the contiguous block of gray pixels in the test input grid.

  2. Create a copy of the input grid as the initial output grid.

  3. Identify the outline pixels of the gray object.

  4. Change the color of the outline pixels to azure (8) in the output grid.

  5. Identify the interior pixels of the gray object.

  6. Change the color of the interior pixels to red (2) in the output grid.

  7. Keep the white (0) background pixels as they are.

import numpy as np
from scipy.ndimage import label

input_test = np.array([[0, 0, 5, 5, 0, 5, 5, 5, 0, 0, 0],
                       [0, 0, 5, 5, 0, 0, 5, 0, 0, 0, 0],
                       [0, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0],
                       [0, 0, 0, 0, 5, 5, 5, 0, 0, 0, 0],
                       [0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
                       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

output_test = np.copy(input_test)
rows, cols = input_test.shape

def get_neighbors(grid, row, col):
    neighbors = []
    rows, cols = grid.shape
    for dr, dc in [(0, 1), (0, -1), (1, 0), (-1, 0)]:
        new_row, new_col = row + dr, col + dc
        if 0 <= new_row < rows and 0 <= new_col < cols:
            neighbors.append(grid[new_row, new_col])
    return neighbors

def check_outline(grid, row, col, object_color, background_color):
    neighbors = get_neighbors(grid, row, col)
    return any(neighbor == background_color for neighbor in neighbors)

def check_interior(grid, row, col, object_color):
    neighbors = get_neighbors(grid, row, col)
    return all(neighbor == object_color for neighbor in neighbors)

labeled_grid_test, num_labels_test = label(input_test == 5)

if num_labels_test == 1:
    object_pixels_test = np.argwhere(labeled_grid_test == 1)
    for row, col in object_pixels_test:
        if check_outline(input_test, row, col, 5, 0):
            output_test[row, col] = 8
        elif check_interior(input_test, row, col, 5):
            output_test[row, col] = 2

print(output_test)
time

response time

total elapsed

7.146

76.685

usage

token type

call count

total used

Prompt

13388

40085

Response

835

9946

Total

14223

50031

Cached

0

0