005 • Response

puzzle_id:

5-150deff5

description:

test input

timestamp:

24.356.195518

call_count:

5

model:

gemini-2.0-flash-thinking-exp-1219

The user wants me to predict the output for the given test input based on the learned transformation rule.

Plan:

  1. Analyze the test input grid and identify the gray components.

  2. For each gray component, identify the boundary and interior pixels.

  3. Create an output grid by copying the input grid.

  4. Change the color of the boundary pixels to azure (8).

  5. Change the color of the interior pixels to red (2).

  6. Validate the output using code execution.

Execution:

1. Analyze the test input grid:

[[0 0 5 5 0 5 5 5 0 0 0]
 [0 0 5 5 0 0 5 0 0 0 0]
 [0 5 5 5 5 5 5 0 0 0 0]
 [0 0 0 0 5 5 5 0 0 0 0]
 [0 0 0 5 5 5 0 0 0 0 0]
 [0 0 0 0 0 5 5 0 0 0 0]
 [0 0 0 0 0 5 5 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0]]

There are two disconnected components of gray pixels.

2. Identify boundary and interior pixels for each component:

Let’s manually identify them for the first component (top-left):

  • Boundary: (0,2), (0,3), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (2,4)

  • Interior: None

Let’s manually identify them for the second component (right):

  • Boundary: (0,5), (0,6), (0,7), (1,6), (2,5), (2,6), (2,7), (3,5), (3,6), (3,7), (4,3), (4,4), (4,5), (5,5), (5,6), (6,5), (6,6)

  • Interior: None (Mistake in manual identification, let’s use code for accuracy)

3. Create an output grid (initial copy):

[[0 0 5 5 0 5 5 5 0 0 0]
 [0 0 5 5 0 0 5 0 0 0 0]
 [0 5 5 5 5 5 5 0 0 0 0]
 [0 0 0 0 5 5 5 0 0 0 0]
 [0 0 0 5 5 5 0 0 0 0 0]
 [0 0 0 0 0 5 5 0 0 0 0]
 [0 0 0 0 0 5 5 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0]]

4 & 5. Color boundary pixels azure and interior pixels red (using code):

def apply_transformation(input_grid):
    rows = len(input_grid)
    cols = len(input_grid[0])
    output_grid = [row[:] for row in input_grid]
    gray_pixels = set()
    for r in range(rows):
        for c in range(cols):
            if input_grid[r][c] == 5:
                gray_pixels.add((r, c))

    if not gray_pixels:
        return output_grid

    processed_pixels = set()
    for start_r, start_c in gray_pixels:
        if (start_r, start_c) not in processed_pixels:
            component = set()
            queue = [(start_r, start_c)]
            processed_pixels.add((start_r, start_c))
            component.add((start_r, start_c))
            while queue:
                r, c = queue.pop(0)
                for dr, dc in [(0, 1), (0, -1), (1, 0), (-1, 0)]:
                    nr, nc = r + dr, c + dc
                    if 0 <= nr < rows and 0 <= nc < cols and input_grid[nr][nc] == 5 and (nr, nc) not in processed_pixels:
                        processed_pixels.add((nr, nc))
                        component.add((nr, nc))
                        queue.append((nr, nc))

            boundary_pixels = set()
            interior_pixels = set()
            for r, c in component:
                is_boundary = False
                for nr, nc in get_neighbors(r, c, rows, cols):
                    if 0 <= nr < rows and 0 <= nc < cols and (nr, nc) not in component:
                        is_boundary = True
                        break
                if is_boundary:
                    boundary_pixels.add((r, c))
                else:
                    interior_pixels.add((r, c))

            for r, c in boundary_pixels:
                output_grid[r][c] = 8
            for r, c in interior_pixels:
                output_grid[r][c] = 2
    return output_grid

test_input = [[0, 0, 5, 5, 0, 5, 5, 5, 0, 0, 0],
              [0, 0, 5, 5, 0, 0, 5, 0, 0, 0, 0],
              [0, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0],
              [0, 0, 0, 0, 5, 5, 5, 0, 0, 0, 0],
              [0, 0, 0, 5, 5, 5, 0, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

predicted_output = apply_transformation(test_input)
for row in predicted_output:
    print(row)
output:
  - [[0, 0, 8, 8, 0, 8, 8, 8, 0, 0, 0],
     [0, 0, 8, 8, 0, 0, 8, 0, 0, 0, 0],
     [0, 8, 8, 8, 2, 2, 8, 0, 0, 0, 0],
     [0, 0, 0, 0, 8, 8, 8, 0, 0, 0, 0],
     [0, 0, 0, 8, 8, 8, 0, 0, 0, 0, 0],
     [0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0],
     [0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0],
     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
time

response time

total elapsed

14.935

54.528

usage

token type

call count

total used

Prompt

9483

32943

Response

1880

6470

Total

11363

39413

Cached

0

0