004 • Response

puzzle_id:

1-3aa6fb7a

description:

test input

timestamp:

24.356.194941

call_count:

4

model:

gemini-2.0-flash-thinking-exp-1219

The user has provided a test input grid and wants me to predict the output based on the derived natural language program.

Plan:

  1. Analyze the test input grid: Identify the azure objects.

  2. Apply the transformation rule: For each azure object, identify the topmost and bottommost pixels and change the adjacent white pixels to blue according to the rule.

  3. Construct the predicted output grid.

  4. Use ``code_execution`` to verify the prediction.

Analyze the test input grid:

[[0 0 0 0 0 8 8]
 [8 8 0 0 0 0 8]
 [8 0 0 0 0 0 0]
 [0 0 0 8 0 0 0]
 [0 0 0 8 8 0 0]
 [0 8 0 0 0 0 0]
 [8 8 0 0 0 0 0]]
  • Object 1: Located on the right side. Pixels: (0,5), (0,6), (1,6).

    • Topmost: (0,5)

    • Bottommost: (1,6)

  • Object 2: Located on the left side. Pixels: (1,0), (1,1), (2,0).

    • Topmost: (1,0)

    • Bottommost: (2,0)

  • Object 3: Located in the middle. Pixels: (3,3), (4,3), (4,4).

    • Topmost: (3,3)

    • Bottommost: (4,4)

  • Object 4: Located on the left side. Pixels: (5,1).

    • Topmost: (5,1)

    • Bottommost: (5,1)

  • Object 5: Located on the left side. Pixels: (6,0), (6,1).

    • Topmost: (6,0)

    • Bottommost: (6,1)

Apply the transformation rule:

  • Object 1 (Right):

    • Topmost (0,5): Right neighbor (0,6) is azure, no change.

    • Bottommost (1,6): Left neighbor (1,5) is white, change to blue.

  • Object 2 (Left-Top):

    • Topmost (1,0): Right neighbor (1,1) is azure, no change.

    • Bottommost (2,0): Left neighbor (2,-1) is out of bounds, no change.

  • Object 3 (Middle):

    • Topmost (3,3): Right neighbor (3,4) is white, change to blue.

    • Bottommost (4,4): Left neighbor (4,3) is azure, no change.

  • Object 4 (Left-Middle):

    • Topmost (5,1): Right neighbor (5,2) is white, change to blue.

    • Bottommost (5,1): Left neighbor (5,0) is white, change to blue.

  • Object 5 (Left-Bottom):

    • Topmost (6,0): Right neighbor (6,1) is azure, no change.

    • Bottommost (6,1): Left neighbor (6,0) is azure, no change.

Construct the predicted output grid:

[[0, 0, 0, 0, 0, 8, 8],
 [8, 8, 0, 0, 1, 0, 8],
 [8, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 8, 1, 0, 0],
 [0, 0, 0, 8, 8, 0, 0],
 [0, 8, 1, 0, 0, 0, 0],
 [8, 8, 0, 0, 0, 0, 0]]

Validate with code execution:

def find_objects(grid, color):
    rows = len(grid)
    cols = len(grid[0])
    visited = [[False for _ in range(cols)] for _ in range(rows)]
    objects = []

    for r in range(rows):
        for c in range(cols):
            if grid[r][c] == color and not visited[r][c]:
                object_pixels = []
                stack = [(r, c)]
                visited[r][c] = True
                while stack:
                    row, col = stack.pop()
                    object_pixels.append((row, col))
                    for dr, dc in [(0, 1), (0, -1), (1, 0), (-1, 0)]:
                        nr, nc = row + dr, col + dc
                        if 0 <= nr < rows and 0 <= nc < cols and \
                           grid[nr][nc] == color and not visited[nr][nc]:
                            visited[nr][nc] = True
                            stack.append((nr, nc))
                objects.append(object_pixels)
    return objects

def transform_grid(input_grid):
    rows = len(input_grid)
    cols = len(input_grid[0])
    output_grid = [row[:] for row in input_grid]
    azure_objects = find_objects(input_grid, 8)

    for obj in azure_objects:
        if not obj:
            continue
        topmost_pixel = min(obj, key=lambda x: x[0])
        bottommost_pixel = max(obj, key=lambda x: x[0])

        # Check right of topmost
        r, c = topmost_pixel
        if c + 1 < cols and input_grid[r][c + 1] == 0:
            output_grid[r][c + 1] = 1

        # Check left of bottommost
        r, c = bottommost_pixel
        if c - 1 >= 0 and input_grid[r][c - 1] == 0:
            output_grid[r][c - 1] = 1
    return output_grid

test_input = [[0, 0, 0, 0, 0, 8, 8],
              [8, 8, 0, 0, 0, 0, 8],
              [8, 0, 0, 0, 0, 0, 0],
              [0, 0, 0, 8, 0, 0, 0],
              [0, 0, 0, 8, 8, 0, 0],
              [0, 8, 0, 0, 0, 0, 0],
              [8, 8, 0, 0, 0, 0, 0]]

predicted_output = transform_grid(test_input)
print(predicted_output)
time

response time

total elapsed

13.217

55.021

usage

token type

call count

total used

Prompt

8785

22020

Response

1639

6799

Total

10424

28819

Cached

0

0