002 • Response
- puzzle_id:
5-150deff5
- description:
example_2
- timestamp:
24.329.071439
- call_count:
2
- model:
models/gemini-exp-1114
This second example again shows an input grid with a single gray (5) shape, this time forming a more block-like shape with an extrusion on the bottom left. In the output, similar to example 1, the horizontal segments of the gray shape are transformed to azure (8) and the vertical segments are converted to red (2). The overall shape and position are again maintained, with only color changes according to the orientation of the segments.
input:
width: 10
height: 8
colors:
- 0: 54
- 5: 26
objects:
- irregular shape - block with extrusion in gray (5)
output:
width: 10
height: 8
colors:
- 0: 54
- 8: 14
- 2: 12
objects:
- irregular shape - block with extrusion with azure (8) horizontal and red (2) vertical segments
differences:
cells_changed: 26
colors_changed: gray (5) to azure (8) and red (2)
transformation:
- Change color of the horizontal segments to azure (8)
- Change color of the vertical segments to red (2)
code_execution:
import numpy as np
input_grid = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 5, 5, 5, 5, 5, 5, 0, 0, 0],
[0, 5, 5, 5, 5, 5, 5, 0, 0, 0],
[0, 0, 0, 5, 0, 0, 5, 0, 0, 0],
[0, 0, 0, 0, 5, 5, 5, 0, 0, 0],
[0, 0, 0, 0, 5, 5, 5, 0, 0, 0],
[0, 0, 0, 0, 5, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
output_grid = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 8, 2, 8, 8, 2, 0, 0, 0],
[0, 8, 8, 2, 8, 8, 2, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 2, 0, 0, 0],
[0, 0, 0, 0, 2, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 2, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
def find_color_changes(input_grid, output_grid):
changes = []
for y in range(input_grid.shape[0]):
for x in range(input_grid.shape[1]):
if input_grid[y, x] != output_grid[y, x]:
changes.append(((y, x), input_grid[y, x], output_grid[y, x]))
return changes
changes = find_color_changes(input_grid, output_grid)
print(changes)
def is_horizontal(grid, y, x):
if grid[y,x] == 0:
return False
neighbors = []
if x > 0: neighbors.append(grid[y, x-1])
if x < grid.shape[1] -1: neighbors.append(grid[y, x+1])
return any(n == grid[y,x] for n in neighbors)
def is_vertical(grid, y, x):
if grid[y, x] == 0:
return False
neighbors = []
if y > 0 : neighbors.append(grid[y-1,x])
if y < grid.shape[0] -1 : neighbors.append(grid[y+1,x])
return any(n == grid[y,x] for n in neighbors)
horizontal_changes = []
vertical_changes = []
for (y, x), old_color, new_color in changes:
if is_horizontal(input_grid, y, x):
horizontal_changes.append(((y,x), old_color, new_color))
elif is_vertical(input_grid, y, x):
vertical_changes.append(((y,x), old_color, new_color))
print("Horizontal changes:", horizontal_changes)
print("Vertical changes:", vertical_changes)
code_execution_result: 1 ``` [((1, 1), np.int64(5), np.int64(8)), ((1, 2), np.int64(5), np.int64(8)), ((1, 3), np.int64(5), np.int64(2)), ((1, 4), np.int64(5), np.int64(8)), ((1, 5), np.int64(5), np.int64(8)), ((1, 6), np.int64(5), np.int64(2)), ((2, 1), np.int64(5), np.int64(8)), ((2, 2), np.int64(5), np.int64(8)), ((2, 3), np.int64(5), np.int64(2)), ((2, 4), np.int64(5), np.int64(8)), ((2, 5), np.int64(5), np.int64(8)), ((2, 6), np.int64(5), np.int64(2)), ((3, 3), np.int64(5), np.int64(2)), ((3, 6), np.int64(5), np.int64(2)), ((4, 4), np.int64(5), np.int64(2)), ((4, 5), np.int64(5), np.int64(8)), ((4, 6), np.int64(5), np.int64(8)), ((5, 4), np.int64(5), np.int64(2)), ((5, 5), np.int64(5), np.int64(8)), ((5, 6), np.int64(5), np.int64(8)), ((6, 4), np.int64(5), np.int64(2))] Horizontal changes: [((1, 1), np.int64(5), np.int64(8)), ((1, 2), np.int64(5), np.int64(8)), ((1, 4), np.int64(5), np.int64(8)), ((1, 5), np.int64(5), np.int64(8)), ((2, 1), np.int64(5), np.int64(8)), ((2, 2), np.int64(5), np.int64(8)), ((2, 4), np.int64(5), np.int64(8)), ((2, 5), np.int64(5), np.int64(8)), ((4, 5), np.int64(5), np.int64(8)), ((4, 6), np.int64(5), np.int64(8)), ((5, 5), np.int64(5), np.int64(8)), ((5, 6), np.int64(5), np.int64(8))] Vertical changes: [((1, 3), np.int64(5), np.int64(2)), ((1, 6), np.int64(5), np
response time |
total elapsed |
---|---|
63.869 |
136.472 |
token type |
call count |
total used |
---|---|---|
Prompt |
5976 |
8514 |
Response |
2048 |
2224 |
Total |
8024 |
10738 |
Cached |
0 |
0 |
See also