003 • Response
- puzzle_id:
4-0d3d703e
- description:
example_3
- timestamp:
24.329.071439
- call_count:
3
- model:
models/gemini-exp-1114
This example follows the same pattern as the previous two, with each column containing a single color. The output grid also has three columns with each column a different single color.
input:
width: 3
height: 3
colors:
- 5: 3
- 8: 3
- 6: 3
objects:
- three columns of color
output:
width: 3
height: 3
colors:
- 1: 3
- 9: 3
- 2: 3
objects:
- three columns of color
differences:
cells_changed: 9
colors_changed: all colors changed to a new color
transformation:
color value mapping 5->1, 8->9, 6->2
code_execution:
import numpy as np
input_grid = np.array([[5, 8, 6], [5, 8, 6], [5, 8, 6]])
output_grid = np.array([[1, 9, 2], [1, 9, 2], [1, 9, 2]])
def find_color_mapping(in_grid, out_grid):
color_map = {}
for i in range(in_grid.shape[0]):
for j in range(in_grid.shape[1]):
color_map[in_grid[i, j]] = out_grid[i, j]
return color_map
color_map = find_color_mapping(input_grid, output_grid)
print(color_map)
code_execution_result: 1
{np.int64(5): np.int64(1), np.int64(8): np.int64(9), np.int64(6): np.int64(2)}
The code confirms the color mapping speculation: 5->1, 8->9, 6->2.
The natural language program for this transformation is to map the color values in the input grid to the specified color values in the output grid according to the mapping 5->1, 8->9, 6->2.
response time |
total elapsed |
---|---|
19.685 |
66.327 |
token type |
call count |
total used |
---|---|---|
Prompt |
4412 |
9860 |
Response |
520 |
1099 |
Total |
4932 |
10959 |
Cached |
0 |
0 |
See also