002 • Response
- puzzle_id:
4-0d3d703e
- description:
example_2
- timestamp:
24.329.071439
- call_count:
2
- model:
models/gemini-exp-1114
This example is very similar to example 1, with each column containing a different color. The output grid has the same dimensions as the input and also shows columns of a single color.
input:
width: 3
height: 3
colors:
- 2: 3
- 3: 3
- 8: 3
objects:
- three columns of color
output:
width: 3
height: 3
colors:
- 6: 3
- 4: 3
- 9: 3
objects:
- three columns of color
differences:
cells_changed: 9
colors_changed: all colors changed to a new color
transformation:
color value mapping 2->6, 3->4, 8->9
code_execution:
import numpy as np
input_grid = np.array([[2, 3, 8], [2, 3, 8], [2, 3, 8]])
output_grid = np.array([[6, 4, 9], [6, 4, 9], [6, 4, 9]])
def find_color_mapping(in_grid, out_grid):
color_map = {}
for i in range(in_grid.shape[0]):
for j in range(in_grid.shape[1]):
color_map[in_grid[i, j]] = out_grid[i, j]
return color_map
color_map = find_color_mapping(input_grid, output_grid)
print(color_map)
code_execution_result: 1
{np.int64(2): np.int64(6), np.int64(3): np.int64(4), np.int64(8): np.int64(9)}
The code confirms the color mapping speculation: 2->6, 3->4, 8->9.
The natural language program for this transformation is to map the color values in the input grid to the specified color values in the output grid according to the mapping 2->6, 3->4, 8->9.
response time |
total elapsed |
---|---|
18.266 |
46.561 |
token type |
call count |
total used |
---|---|---|
Prompt |
3292 |
5448 |
Response |
524 |
579 |
Total |
3816 |
6027 |
Cached |
0 |
0 |
See also