006 • Response
- puzzle_id:
1-3aa6fb7a
- description:
review working
- timestamp:
24.329.071439
- call_count:
6
- model:
models/gemini-exp-1114
code_execution_result: 1
Test Input - Top left of cluster: (0, 5)
Test Input - Top left of cluster: (1, 0)
Test Input - Top left of cluster: (1, 6)
Test Input - Top left of cluster: (3, 3)
Test Input - Top left of cluster: (5, 1)
Test Input - Top left of cluster: (6, 0)
Test Output Grid:
[[0 0 0 0 0 8 8]
[8 8 0 0 0 0 8]
[1 0 0 0 0 0 0]
[0 0 0 8 0 0 0]
[0 0 0 8 8 0 0]
[0 8 0 0 0 0 0]
[8 8 0 0 0 0 0]]
The code execution output correctly identifies the top left pixel of each cluster. The output grid is constructed as expected by placing blue (1) pixels in those locations. However, the output is not correct for the case of overlapping pixels. When a cluster is right next to another, the top left can sometimes be an existing azure (8). This needs to be handled correctly to change a white (0) pixel to blue (1).
The handling for this in the last code execution is problematic. It does not consider diagonals. I’ll try a different approach to avoid potential errors like this. I will only change white (0) pixels to blue (1).
Revised Natural Language Program: Identify clusters of azure (8) pixels. For each cluster, locate the top-left-most white (0) pixel adjacent (including diagonals) to an azure (8) pixel in the cluster. If such a pixel exists, change its color to blue (1).
code_execution:
import numpy as np
def find_clusters(grid, color):
# ... (same as before)
def find_top_left_white(grid, cluster):
# Find all white pixels adjacent to azure pixels in the cluster
candidates = []
for r, c in cluster:
for dr in [-1, 0, 1]:
for dc in [-1, 0, 1]:
if dr == 0 and dc == 0:
continue # Skip the current pixel itself
nr, nc = r + dr, c + dc
if 0 <= nr < grid.shape[0] and 0 <= nc < grid.shape[1] and grid[nr, nc] == 0:
candidates.append((nr, nc))
# If any candidates exist, return the top-left most one
if candidates:
return min(candidates, key=lambda x: (x[0], x[1]))
else:
return None
# Test with the test input grid
test_input_grid = np.array([[0, 0, 0, 0, 0, 8, 8], [8, 8, 0, 0, 0, 0, 8], [8, 0, 0, 0, 0, 0, 0], [0, 0, 0, 8, 0, 0, 0], [0, 0, 0, 8, 8, 0, 0], [0, 8, 0, 0, 0, 0, 0], [8, 8, 0, 0, 0, 0, 0]])
test_clusters = find_clusters(test_input_grid, 8)
# Construct the output grid
test_output_grid = test_input_grid.copy()
for cluster in test_clusters:
top_left_white = find_top_left_white(test_input_grid, cluster)
if top_left_white:
test_output_grid[top_left_white] = 1
print(test_output_grid)
function_call: update_working_output_grid
[[0 0 0 0 0 8 8]
[8 8 0 0 0 0 8]
[1 0 0 0 0 0 0]
[0 0 0 8 0 0 0]
[0 0 0 8 8 0 0]
[0 1 0 0 0 0 0]
[1 8 0 0 0 0 0]]
response time |
total elapsed |
---|---|
25.103 |
205.345 |
token type |
call count |
total used |
---|---|---|
Prompt |
9236 |
38394 |
Response |
1052 |
5330 |
Total |
10288 |
43724 |
Cached |
0 |
0 |
See also