003 • Response
- puzzle_id:
1-3aa6fb7a
- description:
example_summary
- timestamp:
24.329.071439
- call_count:
3
- model:
models/gemini-exp-1114
Ruminate Phase
Text Summary
In both examples provided, the grids contain clusters of azure (8) pixels on a white (0) background. The transformation involves identifying each cluster of azure (8) pixels and locating the top left pixel of each cluster. In the output grid, the color of this top left pixel is changed from white (0) to blue (1), while all other pixels remain the same. The clusters themselves remain unchanged in shape and position between the input and output grids.
The core transformation can be summarized as: Identify the top left pixel of each cluster of azure (8) pixels and change its color from white (0) to blue (1).
Code Execution to Validate Natural Language Program
We will refine the find_top_left
function to accurately identify the top left pixel of each cluster using the correct sorting key lambda x: (x[0], x[1])
. This will ensure that the correct pixel is identified for color transformation.
code_execution:
import numpy as np
def find_clusters(grid, color):
clusters = []
visited = np.zeros_like(grid, dtype=bool)
def explore(row, col, cluster):
if row < 0 or row >= grid.shape[0] or col < 0 or col >= grid.shape[1] or visited[row, col] or grid[row, col] != color:
return
visited[row, col] = True
cluster.append((row, col))
explore(row + 1, col, cluster)
explore(row - 1, col, cluster)
explore(row, col + 1, cluster)
explore(row, col - 1, cluster)
for r in range(grid.shape[0]):
for c in range(grid.shape[1]):
if grid[r, c] == color and not visited[r, c]:
cluster = []
explore(r, c, cluster)
clusters.append(cluster)
return clusters
def find_top_left(cluster):
return min(cluster, key=lambda x: (x[0], x[1]))
# Test with example 1
input_grid1 = np.array([[0, 0, 0, 0, 0, 0, 0], [0, 8, 0, 0, 0, 0, 0], [0, 8, 8, 0, 0, 0, 0], [0, 0, 0, 0, 8, 8, 0], [0, 0, 0, 0, 0, 8, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]])
output_grid1 = np.array([[0, 0, 0, 0, 0, 0, 0], [0, 8, 1, 0, 0, 0, 0], [0, 8, 8, 0, 0, 0, 0], [0, 0, 0, 0, 8, 8, 0], [0, 0, 0, 0, 1, 8, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]])
clusters1 = find_clusters(input_grid1, 8)
for cluster in clusters1:
top_left = find_top_left(cluster)
print("Example 1 - Top left of input cluster:", top_left)
# Test with example 2
input_grid2 = np.array([[0, 0, 0, 0, 8, 8, 0], [0, 0, 0, 0, 0, 8, 0], [0, 0, 8, 0, 0, 0, 0], [0, 0, 8, 8, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 8, 0, 0], [0, 0, 0, 8, 8, 0, 0]])
output_grid2 = np.array([[0, 0, 0, 0, 8, 8, 0], [0, 0, 0, 0, 1, 8, 0], [0, 0, 8, 1, 0, 0, 0], [0, 0, 8, 8, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 8, 0, 0], [0, 0, 0, 8, 8, 0, 0]])
clusters2 = find_clusters(input_grid2, 8)
for cluster in clusters2:
top_left = find_top_left(cluster)
print("Example 2 - Top left of input cluster:", top_left)
response time |
total elapsed |
---|---|
39.98 |
133.254 |
token type |
call count |
total used |
---|---|---|
Prompt |
5846 |
12735 |
Response |
1241 |
2935 |
Total |
7087 |
15670 |
Cached |
0 |
0 |
See also