README.md
ARC with Neural Network
Abstraction and Reasoning Challenge
Output
Accuracy First Search (with recurrsion of PixelEachSubstitutor )
Main Libraries
Pytorch (Machine Learning Framework)
Pytorch Lightning (Lightweight PyTorch Wrapper)
Hydra (Configuration Manager)
Rich (Formatting)
1. Setup
conda env create -f environment.yml -n myenv
conda activate myenv
2. Download ARC Data
To use Kaggle API, place kaggle.json in the location appropriate for your operating system
mkdir data
cd data
kaggle competitions download -c arc-prize-2024
unzip arc-prize-2024.zip -d arc-prize-2024
3. Run
src/data.py
Define Dataset, Dataloader, Datamodule (Pytorch Lighting)
Run: Visualize all data
src/classify.py
Filter data to train or test
Run: Visualize filtered data
src/arc/model/*
Define Model
config/*
Set Hyperparameters for train, test
src/train.py
Run: Train model
src/test.py
Run: Test model trained